# C. Superior Periodic Subarrays

### гаралт стандарт гаралт

You are given an infinite periodic array $a_{0}, a_{1}, ..., a_{n - 1}, ...$ with the period of length $n$. Formally, . A periodic subarray $(l, s)$ ($0 ≤ l < n$, $1 ≤ s < n$) of array $a$ is an infinite periodic array with a period of length $s$ that is a subsegment of array $a$, starting with position $l$.

A periodic subarray $(l, s)$ is superior$, if when attaching it to the array$a$, starting from index$l$, any element of the subarray is larger than or equal to the corresponding element of array$a$. An example of attaching is given on the figure (top -- infinite array$a$, bottom -- its periodic subarray$(l, s)$): Find the number of distinct pairs$(l, s)$, corresponding to the superior periodic arrays. ## Оролт The first line contains number$n$($1 ≤ n ≤ 2*10^{5}$). The second line contains$n$numbers$a_{0}, a_{1}, ..., a_{n - 1}$($1 ≤ a_{i} ≤ 10^{6}$), separated by a space. ## Гаралт Print a single integer -- the sought number of pairs. Орчуулсан: [орчуулагдаж байгаа] #### Жишээ тэстүүд ##### Оролт 4 7 1 2 3  ##### Гаралт 2  ##### Оролт 2 2 1  ##### Гаралт 1  ##### Оролт 3 1 1 1  ##### Гаралт 6  ## Тэмдэглэл In the first sample the superior subarrays are (0, 1) and (3, 2). Subarray (0, 1) is superior, as$a_{0} ≥ a_{0}, a_{0} ≥ a_{1}, a_{0} ≥ a_{2}, a_{0} ≥ a_{3}, a_{0} ≥ a_{0}, ...$Subarray (3, 2) is superior$a_{3} ≥ a_{3}, a_{0} ≥ a_{0}, a_{3} ≥ a_{1}, a_{0} ≥ a_{2}, a_{3} ≥ a_{3}, ...$In the third sample any pair of$(l, s)\$ corresponds to a superior subarray as all the elements of an array are distinct.

Сэтгэгдлүүдийг ачааллаж байна...