C. Гармони анализ

хугацааны хязгаарлалт 3 секунд

санах ойн хязгаарлалт 256 мегабайт

оролт стандарт оролт

гаралт стандарт гаралт

Семистер аль хэдийн дуусч байна, иймээс Данил эцэст нь хүчин чармайлт гаргаж багшийг нь харахаар гармони анализийн хичээлд суухаар шийдсэн. Данил уг хичээл дээр багш ангид хялбар даалгавар өгөх хүртэл маш уйдаж байсан: вектор бүрийн координат бүр $1$ эсвэл $ - 1$ байх ба дурын хоёр вектор ортогналь байх $4$-н хэмжээст огторгуй дахь $4$ шулуун ол. Сануулахад $n$ хэмжээст огторгуй дахь хоёр вектор нь зөвхөн тэдний скалар үржвэр тэгтэй тэнцүү буюу үед л ортогональ гэж тооцогдоно.

Данил уг бодлогын шийдлийг хурдан олсон ба багш бодлого илүү ерөнхий тохиолдолд буюу $2^{k}$ хэмжээст огторгуйд $2^{k}$ вектортой тохиолдолд шийдэгдэж болох юм байна гэдгийг анзаарсан. Данил гэртээ ирэхдээ энэ бодлогын шийдэлд тун ойртож ирсэн байв. Та үүнийг дуусгаж чадах уу?**

Оролт

Оролтын нэг мөрөнд бүхэл тоон утга $k$ ($0 ≤ k ≤ 9$) байна.

Гаралт

Тус бүрдээ $2^{k}$ тэмдэгттэй $2^{k}$ мөр хэвлэнэ. Хэрвээ $i$-р векторын $j$-р координат $ - 1$-тэй тэнцүү байвал $i$-р мөрний $j$-р тэмдэгт '$ * $' байх ёстой ба хэрвээ $ + 1$ байвал '$ + $'-тэй тэнцүү байх ёстой. Хариулт үргэлж оршин байх нь тодорхой.

Хэрюээ хэд хэдэн зөв хариу байвал алийг нь ч хэвлэж болно.

Орчуулсан: Г.Мэндбаяр

Жишээ тэстүүд

Оролт
2
Гаралт
++**
+*+*
++++
+**+

Тэмдэглэл

Жишээн дахь бүх скалар үржвэрийг авч үзье:

  • $1$ болон $2$ векторууд: $( + 1)*( + 1) + ( + 1)*( - 1) + ( - 1)*( + 1) + ( - 1)*( - 1) = 0$
  • $1$ болон $3$ векторууд: $( + 1)*( + 1) + ( + 1)*( + 1) + ( - 1)*( + 1) + ( - 1)*( + 1) = 0$
  • $1$ болон $4$ векторууд: $( + 1)*( + 1) + ( + 1)*( - 1) + ( - 1)*( - 1) + ( - 1)*( + 1) = 0$
  • $2$ болон $3$ векторууд: $( + 1)*( + 1) + ( - 1)*( + 1) + ( + 1)*( + 1) + ( - 1)*( + 1) = 0$
  • $2$ болон $4$ векторууд: $( + 1)*( + 1) + ( - 1)*( - 1) + ( + 1)*( - 1) + ( - 1)*( + 1) = 0$
  • $3$ болон $4$ векторууд: $( + 1)*( + 1) + ( + 1)*( - 1) + ( + 1)*( - 1) + ( + 1)*( + 1) = 0$
Сэтгэгдлүүдийг ачааллаж байна...